Аннотация:
Для уравнения теплопроводности в трехмерном пространстве получено асимптотическое приближение решения задачи Коши при неограниченном возрастании времени. Предполагается, что локально интегрируемая начальная функция, вообще говоря, не стремящаяся к нулю на бесконечности, имеет степенную асимптотику. Центральную роль в исследовании играет метод введения вспомогательного параметра, включающий регуляризацию особенностей в интегралах. Доказано, что асимптотика решения имеет вид ряда по отрицательным полуцелым степеням переменной времени с коэффициентами, зависящими от автомодельных переменных и логарифма времени, а главное приближение найдено в явном виде. На примере задачи Коши для векторного уравнения Бюргерса показано, что асимптотический анализ решения методом согласования приводит к необходимости построения асимптотического приближения решения уравнения теплопроводности.
Библиография: 31 название.
Ключевые слова:уравнение теплопроводности, задача Коши, асимптотика, метод вспомогательного параметра, регуляризация особенностей.