Аннотация:
При $p \in (1,\infty)$ пусть $(\operatorname{X},\operatorname{d},\mu)$ – метрическое пространство с равномерно локально удваивающей мерой $\mu$, допускающее слабое локальное $(1,p)$-неравенство Пуанкаре. При каждом $\theta \in [0,p)$ мы характеризуем след пространства Соболева $W^{1}_{p}(\operatorname{X})$ на замкнутых множествах $S \subset \operatorname{X}$, удовлетворяющих условию регулярности $\theta$-коразмерностного обхвата снизу. В частности, если пространство $(\operatorname{X},\operatorname{d},\mu)$ является $Q$-регулярным по Альфорсу при некоторых $Q \geqslant 1$ и $p \in (Q,\infty)$, то мы получаем внутреннее описание следа пространства Соболева $W^{1}_{p}(\operatorname{X})$ на произвольных непустых замкнутых множествах $S \subset \operatorname{X}$.
Библиография: 43 названия.