Аннотация:
Для систем уравнений с бесконечным числом корней иногда удается получить теоремы типа Кушниренко–Бернштейна–Хованского, заменяя вычисление числа корней на вычисление их асимптотической плотности. Мы рассматриваем системы целых функций экспоненциального роста в пространстве $\mathbb C^n$ и вычисляем асимптотику усредненного распределения корней в терминах геометрии выпуклых тел, расположенных в комплексном векторном пространстве.
Библиография: 11 названий.