Аннотация:
Изучается класс биллиардов в круге с проскальзыванием на соизмеримый с $\pi$ угол вдоль граничной окружности. Для таких биллиардов показано, что изоэнергетическая поверхность биллиарда гомеоморфна некоторому линзовому пространству $L(q,p)$ с параметрами $0 < p <q$. Множество тех пар $(q, p)$, для которых существует биллиард в круге с проскальзыванием, реализующий соответствующее линзовое пространство $L(q,p)$, описано в терминах множества решений линейного диофантова уравнения с двумя переменными. Полученный результат остается верен для плоских биллиардов с проскальзыванием в односвязных областях с гладкой границей, т.е. не ограничивается интегрируемым случаем.
Библиография: 30 названий.