RUS  ENG
Полная версия
ЖУРНАЛЫ // Математический сборник // Архив

Матем. сб., 2023, том 214, номер 12, страницы 46–75 (Mi sm9964)

Пространства орбит $G_{n,2}/T^n$ и факторы Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$ многообразий Грассмана $G_{n,2}$

В. М. Бухштаберab, С. Терзичc

a Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
b Национальный исследовательский университет "Высшая школа экономики", г. Москва
c Faculty of Science and Mathematics, University of Montenegro, Podgorica, Montenegro

Аннотация: Комплексные многообразия Грассмана $G_{n,k}$ являются фундаментальными объектами в развитии взаимосвязей алгебраической геометрии и алгебраической топологии. Случай $k=2$ выделяется особо, так как многообразия $G_{n,2}$ обладают несколькими замечательными свойствами, отличающими их от многообразий с $k>2$.
Эта статья посвящена результатам, существенно использующим специфику многообразий $G_{n,2}$. Они относятся к известным задачам о каноническом действии алгебраического тора $(\mathbb{C}^{\ast})^n$ на $G_{n,2}$ и индуцированном действии компактного тора $T^n\subset(\mathbb{C}^{\ast})^n$.
М. Капранов доказал, что компактификацию Делиня–Мамфорда–Гротендика–Кнудсена $\overline{\mathcal{M}}(0,n)$ пространства рациональных стабильных кривых с $n$ пронумерованными отмеченными точками можно отождествить с фактором Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$. В наших недавних работах было дано конструктивное описание пространства орбит $G_{n,2}/T^n$. В этом результате важную роль играют понятия комплекса допустимых многогранников $P_\sigma$, пространств параметров $F_\sigma$ и универсального пространства $\mathcal{F}_n$ параметров $T^n$-действия на $G_{n,2}$.
В настоящей статье получена явная конструкция пространства $\mathcal{F}_n$ методом замечательной компактификации. На основе этой конструкции и описания пространства $\overline{\mathcal{M}}(0,n)$ из работы Киля мы получили явный диффеоморфизм между $\mathcal{F}_n$ и $\overline{\mathcal{M}}(0,n)$. Таким образом, получена реализация фактора Чжоу $G_{n,2}/\!/(\mathbb{C}^{\ast})^n$ в виде пространства $\mathcal{F}_n$ со структурой, в описании которой участвуют допустимые многогранники $P_\sigma$ и пространства $F_\sigma$.
Библиография: 32 названия.

Ключевые слова: универсальное пространство параметров, замечательная компактификация, пространство модулей стабильных кривых, фактор Чжоу, пространство параметров кортежей допустимых многогранников.

MSC: 57N65, 14H10, 14M15, 14C05, 14N20

Поступила в редакцию: 07.06.2023 и 21.07.2023

DOI: 10.4213/sm9964


 Англоязычная версия: Sbornik: Mathematics, 2023, 214:12, 1694–1720

Реферативные базы данных:


© МИАН, 2024