Аннотация:
Рассматривается система полулинейных эллиптических уравнений второго порядка в многомерной области. Граница такой области произвольным образом искривляется, оставаясь в тонком слое вдоль невозмущенной границы. На искривленной границе задается условие Дирихле или условие Неймана. В случае условия Неймана на структуру искривления накладываются дополнительные достаточно естественные и весьма слабые условия. Наложенные условия позволяют рассмотреть очень широкий класс искривлений, включая, например, классическую быстро осциллирующую границу. Показано, что когда упомянутый тонкий слой сжимается и искривленная граница приближается к невозмущенной, усреднение рассматриваемой задачи приводит к той же системе уравнений с теми же краевыми условиями, но уже на предельной границе. Основной результат – доказательство соответствующих операторных $W_2^1$- и $L_2$-оценок.
Библиография: 29 названий.