Аннотация:
Показано, что ассоциативная $PI$-алгебра (не обязательно конечно порожденная) не совпадает со своим коммутантом. Тем самым решена проблема И. В. Львова, поставленная им в Днестровской тетради.
Указанный результат вытекает из того факта (который также устанавливается
в данной работе), что в любом $T$-первичном многообразии выполняется слабое тождество и существует центральный полином (существование центрального полинома
ранее было установлено А. Р. Кемером). Кроме того, показывается устойчивость
$T$-первичных многообразий (для случая нулевой характеристики это сделано ранее
C. В. Охитиным, который опирался на классификацию $T$-первичных многообразий,
полученную А. Р. Кемером).
Ключевые слова:$PI$-алгебра, многообразие алгебр, тождество, устойчивое многообразие, слабое тождество, тождество со следом, формы, тождество Капелли, $T$-первичное многообразие, уравнение Гамильтона–Кэли, центральный многочлен.