Аннотация:
Доказывается, что если конечная группа ранга $r$ допускает автоморфизм $\varphi$ простого порядка, имеющий ровно $m$ неподвижных точек, то она обладает $\varphi$-инвариантной подгруппой $(r,m)$-ограниченного индекса, которая нильпотентна $r$-ограниченной ступени (теорема 1). Тем самым для случая автоморфизма простого порядка усиливаются ранее полученные результаты Шалева, Хухро и Хайкина-Запирайна. Доказательство основано, в частности, на результате о регулярных автоморфизмах колец Ли (теорема 3). По модулю известных результатов общий случай сводится к случаю конечных $p$-групп. Для сведения к кольцам Ли используются также мощные $p$-группы, для которых доказывается полезный факт, позволяющий “склеивать” ступени нильпотентности факторов определенных нормальных рядов (теорема 2).