Аннотация:
Связную замкнутую ориентируемую поверхность $\Phi$ назовем поверхностью обобщенной постоянной ширины $d$, если: 1) конец вектора $Op^*=Op+dn(p)$ принадлежит $\Phi$ для любого $p\in\Phi$, $n(p)$ – единичная внутренняя нормаль, 2) отображение $\varphi\colon p\to p^*$ есть инволюция. Доказана
Теорема.Если для аналитической поверхности $\Phi$ обобщенной постоянной ширины $d$ выполняется условие $|K(p)|=|K(p^*)|$, то $\Phi$ – сфера. Здесь $K(p)$ – гауссова кривизна $\Phi$ в точке $p$.
УДК:
513.013
Статья поступила: 13.06.1990 Окончательный вариант: 02.11.1992