Аннотация:
Пусть $R$ – кольцо с центром $Z(R)$, $n$ – фиксированное положительное целое число и $I$ – ненулевой идеал $R$. Отображение $h\colon R\to R$ называется $n$-централизующим ($n$-коммутирующим) на множестве $S\subset R$, если $[h(x),x^n]\in Z(R)$ ($[h(x),x^n]=0$ соответственно) для всех $x\in S$. В настоящей статье доказаны следующие результаты:
(1) если существуют обобщенные дифференцирования $F$ и $G$ на полупервичном кольце $R$ без $n!$-кручения такие, что $F^2+G$ является $n$-коммутирующим на $R$, то $R$ содержит ненулевой центральный идеал;
(2) если существуют обобщенные дифференцирования $F$ и $G$ на первичном кольце $R$ без $n!$-кручения такие, что $F^2+G$ является $n$-антикоммутирующим на $I$, то $R$ коммутативно.