Аннотация:
В предыдущих работах второго автора начато построение общей теории мультипликативных функций и дифференциалов Прима на компактной римановой поверхности для произвольных характеров. Теория функций на компактных римановых поверхностях существенно отличается от теории функций на конечных римановых поверхностях. В настоящей работе начато построение общей теории функций на переменных конечных римановых поверхностях для мультипликативных мероморфных функций и дифференциалов. Построены все виды элементарных дифференциалов Прима для любых характеров. Найдены размерности и построены явные базисы в двух важных фактор-пространствах дифференциалов Прима. Как следствие находятся размерность и базис в первой голоморфной группе когомологий де Рама дифференциалов Прима для любых характеров.
Ключевые слова:пространство Тейхмюллера конечных римановых поверхностей, дифференциал Прима, векторное расслоение, группа характеров, многообразие Якоби, мультипликативная точка Вейерштрасса.