Аннотация:
Доказаны аналоги теоремы Блэкуелла для взвешенных функций восстановления. Значительно ослаблены, по сравнению с уже известными, условия на последовательность весов и на скачки в процессе восстановления. Доказательства основаны на использовании интегро-локальных предельных теорем и оценок для вероятностей больших уклонений. Относительно распределения скачков рассмотрены четыре типа условий: (a) распределение имеет конечный второй момент, (b) оно принадлежит области притяжения устойчивого закона, (c) его хвосты принадлежат классу так называемых локально правильно меняющихся функций, (d) оно удовлетворяет моментному условию Крамера. В случаях (a)–(c) предполагается, что последовательность весов удовлетворяет условиям регулярности на скользящие средние, тогда как в случае (d) веса могут изменятся экспоненциально быстро.
Ключевые слова:взвешенная функция восстановления, теорема Блэкуелла, интегро-локальные предельные теоремы, теоремы Стоуна–Шеппа, вероятности больших уклонений, локально постоянная функция, правильно меняющаяся функция.