RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 2014, том 55, номер 5, страницы 971–988 (Mi smj2584)

Эта публикация цитируется в 4 статьях

Погрешность и гарантированная точность кубатурных формул в многомерных периодических пространствах Соболева

В. Л. Васкевичab

a Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090
b Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090

Аннотация: Проведена оценка сверху уклонения нормы возмущенного функционала погрешности от нормы исходного функционала погрешности кубатурной формулы на многомерной ограниченной области. Уклонение возникает в результате комбинированного влияния на итог вычислений малых изменений весов кубатурной формулы и округлений при последующем подсчете кубатурной суммы в условиях заданных стандартов (форматов) приближения вещественных чисел. Дана оценка практической погрешности кубатурной формулы при ее действии на произвольную функцию из единичного шара нормированного пространства подынтегральных функций. Полученные оценки применены при исследовании практической погрешности кубатурных формул в случае подынтегральных функций из пространств Соболева на многомерном кубе. Норма функционала погрешности в сопряженном соболевскому классу пространстве представлена в виде положительно определенной квадратичной формы от весов кубатурной формулы. Проведена оценка практической погрешности для кубатурных формул, каждая из которых конструируется как прямое произведение квадратурных формул прямоугольников по ребрам единичного куба. Веса такого прямого произведения положительны.

Ключевые слова: кубатурные формулы, функционалы погрешности, периодические пространства Соболева, константы и функции вложения, практическая погрешность, гарантированная точность.

УДК: 517.518.23+517.518.83+519.651

Статья поступила: 11.07.2014


 Англоязычная версия: Siberian Mathematical Journal, 2014, 55:5, 792–806

Реферативные базы данных:


© МИАН, 2024