RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 2014, том 55, номер 5, страницы 1104–1117 (Mi smj2591)

Эта публикация цитируется в 3 статьях

$\Phi$-гармонические функции на дискретных группах и первые $\ell^\Phi$-когомологии

Я. А. Копыловab, Р. А. Паненкоa

a Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090
b Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090

Аннотация: Изучаются первые группы когомологий счетной дискретной группы $G$ с коэффициентами в $G$-модуле $\ell^\Phi(G)$, где $\Phi$ есть $n$-функция из класса $\Delta_2(0)\cap\nabla_2(0)$. В развитие идей и методов Палса и Мартена–Валетта для конечно порожденной группы $G$ вводится дискретный $\Phi$-лапласиан и доказывается теорема о разложении пространства функций с конечной $\Phi$-суммой Дирихле в прямую сумму пространства $\Phi$-гармонических функций и $\ell^\Phi(G)$ (при соответствующей факторизации). Также показано, что для конечно порожденной группы $G$, у которой есть конечно порожденная бесконечная аменабельная подгруппа с бесконечным централизатором, имеет место равенство $\overline H^1(G,\ell^\Phi(G))=0$. В завершение доказывается тривиальность первой группы когомологий для сплетения двух групп, одна из которых неаменабельна.

Ключевые слова: группа, $n$-функция, пространство Орлича, $2$-регулярность, $\Phi$-гармоническая функция, $1$-когомологии.

УДК: 512.664.4+517.986.6

Статья поступила: 11.11.2013


 Англоязычная версия: Siberian Mathematical Journal, 2014, 55:5, 904–914

Реферативные базы данных:


© МИАН, 2024