RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 2015, том 56, номер 1, страницы 149–157 (Mi smj2628)

Эта публикация цитируется в 3 статьях

О характеризуемости знакопеременных групп порядком и графом простых чисел

А. Махмудифарa, Б. Хосравиab

a Dept. of Pure Math., Faculty of Math. and Computer Sci., Amirkabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran
b School of Mathematics, Institute for Research in Fundamental sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran

Аннотация: Имеется несколько графов, связанных со структурой конечной группы: например, граф простых чисел, разрешимый граф и некоммутативный граф конечной группы. В настоящей работе рассматривается характеризуемость знакопеременных групп порядком и графом простых чисел. В частности, показано, что существует тесная связь между характеризуемостью порядком и графом простых чисел для некоторых знакопеременных групп и гипотезой Гольдбаха. Обсуждаются некоторые вопросы и решается задача характеризуемости знакопеременных и симметрических групп порядком и образцом степеней из работы [R. Kogani-Moghaddam, A. R. Moghaddamfar, Groups with the same order and degree pattern, Sci. China Math., 2012].

Ключевые слова: знакопеременная группа, симметрическая группа, разрешимый граф, граф простых чисел, образец степеней, гипотеза Гольдбаха.

УДК: 512.54

Статья поступила: 01.06.2013


 Англоязычная версия: Siberian Mathematical Journal, 2015, 56:1, 125–131

Реферативные базы данных:


© МИАН, 2025