Аннотация:
Изучается предельное поведение последовательностей циклических систем обыкновенных дифференциальных уравнений, которые были изобретены для математического описания многостадийного синтеза. Главная конструкция, предложенная в работе, – это функция распределения начальных значений. Она позволила указать необходимые и достаточные условия существования, а также полностью описать устройство и все характерные свойства пределов решений тех интегро-дифференциальных уравнений “сверточного” типа, к которым без труда приводятся системы циклического синтеза. Все обсуждаемые в статье понятия, методы и задачи по природе своей относятся к таким классическим темам, как вещественная теория функций, эйлеровы интегралы и асимптотический анализ.
Ключевые слова:многостадийный циклический синтез, колокольчики Дирака, неполная гамма-функция Эйлера, асимптотика Лапласа, суммы Абеля, функция распределения начальных условий, интеграл Стилтьеса, принцип выбора Хелли, двумерная ступенька Хевисайда, точки Лебега, неравенство Чебышева.
УДК:517.925+517.5
Статья поступила: 16.06.2015 Окончательный вариант: 20.09.2016