RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 2016, том 57, номер 6, страницы 1346–1360 (Mi smj2828)

Эта публикация цитируется в 1 статье

О классах эквивалентности голоморфных отображений римановой поверхности рода три на риманову поверхность рода два

А. Д. Медныхabc, И. А. Медныхabc

a Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090
b Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090
c Сибирский федеральный университет, пр. Свободный, 79, Красноярск 660041

Аннотация: Обозначим через $\operatorname{Hol}(S_3,S_2)$ множество всех голоморфных отображений римановой поверхности $S_3$ рода три на риманову поверхность $S_2$ рода два. Два отображения $f$ и $g$ из $\operatorname{Hol}(S_3,S_2)$ будем называть эквивалентными, если существуют конформные автоморфизмы $\alpha$ и $\beta$ римановых поверхностей $S_3$ и $S_2$ соответственно такие, что $f\circ\alpha=\beta\circ g$. Известно, что $\operatorname{Hol}(S_3,S_2)$ всегда состоит не более чем из двух классов эквивалентности. Получены следующие результаты. Предположим, что множество $\operatorname{Hol}(S_3,S_2)$ образовано двумя классами эквивалентности. Тогда обе римановы поверхности $S_3$ и $S_2$ задаются вещественными алгебраическими уравнениями. При этом для любой пары неэквивалентных отображений $f$ и $g$ из $\operatorname{Hol}(S_3,S_2)$ существуют антиконформные автоморфизмы $\alpha^-$ и $\beta^-$ – такие, что $f\circ\alpha^-=\beta^-\circ g$. С точностью до конформной эквивалентности существует ровно три пары римановых поверхностей $(S_3,S_2)$, для которых множество $\operatorname{Hol}(S_3,S_2)$ состоит из двух классов эквивалентности.

Ключевые слова: риманова поверхность, голоморфное отображение, антиконформная инволюция, вещественная кривая, конформный автоморфизм.

УДК: 517.545

Статья поступила: 09.12.2015

DOI: 10.17377/smzh.2016.57.612


 Англоязычная версия: Siberian Mathematical Journal, 2016, 57:6, 1055–1065

Реферативные базы данных:


© МИАН, 2024