RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 2017, том 58, номер 3, страницы 530–542 (Mi smj2878)

Эта публикация цитируется в 2 статьях

Сферические кубатурные формулы в пространствах Соболева

В. Л. Васкевичab

a Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090
b Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090

Аннотация: Изучаются последовательности кубатурных формул на единичной сфере многомерного евклидова пространства. Множества узлов рассматриваемых кубатурных формул последовательно вкладываются друг в друга, образуя в пределе плотное на исходной сфере подмножество. В качестве области действия кубатурных формул, т.е. в качестве класса подынтегральных функций, выступают сферические пространства Соболева. Допускается, что эти пространства могут иметь дробную гладкость. Доказано, что среди всевозможных сферических кубатурных формул с заданной совокупностью узлов существует и единственна формула с наименьшей нормой функционала погрешности – оптимальная. Установлено, что веса оптимальной кубатурной формулы являются решением специальной невырожденной системы линейных уравнений. Доказано, что при неограниченном возрастании числа узлов нормы функционалов погрешности оптимальных кубатурных формул стремятся к нулю.

Ключевые слова: сферическая кубатурная формула, функционал погрешности, пространство Соболева на многомерной сфере, константа и функция вложения, оптимальная формула.

УДК: 517.518.23+517.518.83+519.651

MSC: 35R30

Статья поступила: 24.06.2016

DOI: 10.17377/smzh.2017.58.305


 Англоязычная версия: Siberian Mathematical Journal, 2017, 58:3, 408–418

Реферативные базы данных:


© МИАН, 2024