Аннотация:
Изучаются алгебраически и вербально замкнутые подгруппы и ретракты конечно порожденных нильпотентных групп. Особое внимание уделено свободным нильпотентным группам и группам $\mathrm{UT}_n(\mathbb Z)$ унитреугольных $(n\times n)$-матриц над кольцом $\mathbb Z$ целых чисел для произвольного $n$. Замечено, что множества ретрактов конечно порожденных нильпотентных групп совпадают с множествами их алгебраически замкнутых подгрупп. Приведен пример, показывающий, что вербально замкнутая подгруппа конечно порожденной нильпотентной группы может не быть ретрактом (в рассматриваемом случае равносильно: алгебраически замкнутой подгруппой). Другой пример показывает, что пересечение ретрактов (алгебраически замкнутых подгрупп) свободной нильпотентной группы может не быть ретрактом (алгебраически замкнутой подгруппой) этой группы. Установлены необходимые условия, выполненные на ретрактах произвольных конечно порожденных нильпотентных групп. Получены достаточные условия для свойства “быть ретрактом” конечно порожденной нильпотентной группы. Представлен алгоритм, определяющий свойство “быть ретрактом” для подгруппы свободной нильпотентной группы конечного ранга (решение проблемы Мясникова). Также получен общий результат об экзистенциально замкнутых подгруппах конечно порожденных нильпотентных групп без кручения с циклическим центром, из которого следует, в частности, что при любом $n$ группа $\mathrm{UT}_n(\mathbb Z)$ не содержит собственных экзистенциально замкнутых подгрупп.