Аннотация:
Исследуются вычислимо перечислимые (в.п.) отношения эквивалентности на множестве натуральных чисел. Бинарное отношение $R$ на $\omega$ вычислимо сводится к отношению $S$ (обозначается через $R\leq_cS$), если существует вычислимая функция $f(x)$ такая, что для любых $x$ и $y$ условия $(xRy)$ и $(f(x)Sf(y))$ эквивалентны. Отношение эквивалентности $E$ называют темным, если оно не сравнимо относительно $\leq_c$ с тождественным отношением эквивалентности. Доказано, что для любого темного в.п. отношения эквивалентности $E$ существует слабо предполное темное в.п. отношение эквивалентности $F$ такое, что $E\leq_cF$. В качестве следствия этого результата построена бесконечная возрастающая $\leq_c$-цепь слабо предполных темных в.п. отношений эквивалентности. Также показано существование универсального относительно сводимости $\leq_c$ в.п. линейного порядка.
Ключевые слова:отношение эквивалентности, вычислимо перечислимое отношение эквивалентности, вычислимая сводимость, слабо предполное отношение эквивалентности, вычислимо перечислимый линейный порядок, $lo$-сводимость.