Аннотация:
Пусть алгебра фон Неймана $\mathscr M$ операторов действует в гильбертовом пространстве $\mathscr H$, $\tau$ – точный нормальный полуконечный след на $\mathscr M$. Пусть $\mathscr E$, $\mathscr F$ и $\mathscr G$ – идеальные пространства на $(\mathscr M,\tau)$. В терминах идемпотента $P$ из $\mathscr M$ найдены эквивалентные условия, обеспечивающие принадлежность нормального $\tau$-измеримого оператора $X$ к $\mathscr E$. Множества $\mathscr E+\mathscr F$ и $\mathscr E\cdot\mathscr F$ также являются идеальными пространствами на $(\mathscr M,\tau)$, при этом $\mathscr E\cdot\mathscr F=\mathscr F\cdot\mathscr E$ и $(\mathscr E+\mathscr F)\cdot\mathscr G=\mathscr E\cdot\mathscr G+\mathscr F\cdot\mathscr G$. Структура идеальных пространств модулярна. Установлены новые свойства пространства $L_1(\mathscr M,\tau)$ интегрируемых операторов, присоединенных к алгебре $\mathscr M$. Результаты являются новыми и для *-алгебры $\mathscr M=\mathscr B(\mathscr H)$ всех ограниченных линейных операторов в $\mathscr H$, снабженной каноническим следом $\tau=\operatorname{tr}$.