Аннотация:
Изучаются конечные группы со свойством $(*)$: все подгруппы нечетных индексов пронормальны. Пусть $G$ содержит нормальную подгруппу $A$ с этим свойством и в $G/A$ силовские $2$-подгруппы самонормализуемы. Доказано, что $G$ обладает свойством $(*)$ тогда и только тогда, когда этим свойством обладает $N_G(T)/T$, где $T$ – силовская $2$-подгруппа группы $A$. C помощью этого утверждения доказан ряд теорем, которые предполагается использовать для классификации конечных простых групп со свойством $(*)$.