Аннотация:
Рассматриваются класс конечных однородных метрических пространств и ряд его важных подклассов, имеющих естественное определение в терминах метрики и хорошо изученные аналоги в классе римановых многообразий. Исследуются взаимоотношения между этими классами. Строятся примеры соответствующих пространств, часть которых представляют собой множества вершин специальных выпуклых многогранников в евклидовых пространствах. Дается описание изучаемых классов на языке теории графов, с помощью которого строятся примеры конечных метрических пространств с необычными свойствами. Ставится несколько нерешенных задач.