RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 2019, том 60, номер 5, страницы 1153–1164 (Mi smj3139)

Эта публикация цитируется в 5 статьях

Два приложения булевозначного анализа

А. Г. Кусраевab, С. С. Кутателадзеc

a Южный математический институт ВНЦ РАН, ул. Маркуса, 22, Владикавказ 362027
b Северо-Осетинский государственный университет им. К. Л. Хетагурова, ул. Ватутина, 44-46, Владикавказ 362025
c Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090

Аннотация: Представлены два результата, полученные с помощью булевозначного анализа. Первый результат утверждает, что универсально полная векторная решетка, не имеющая локально одномерных полос, допускает разложение в прямую сумму двух порядково плотных и латерально полных векторных подрешеток, инвариантных относительно всех порядковых проекторов, причем каждая из этих подрешеток линейно изоморфна исходной решетке с сохранением полос. Второй результат с учетом принципа переноса для инъективных банаховых решеток устанавливает аналог теоремы Андо о совместной характеризации $A\!L^p$-пространств и пространств $c_0(\Gamma)$ в классе ${\Bbb B}$-циклических банаховых решеток.

Ключевые слова: универсально полная векторная решетка, инъективная банахова решетка, $M$-проектор, оператор Магарам, $A\!L^p$-пространство, булевозначное представление.

УДК: 517.11+517.98

Статья поступила: 04.03.2019
Окончательный вариант: 11.03.2019
Принята к печати: 12.03.2019

DOI: 10.33048/smzh.2019.60.512


 Англоязычная версия: Siberian Mathematical Journal, 2019, 60:5, 902–910

Реферативные базы данных:


© МИАН, 2024