Аннотация:
Целью настоящей работы является обобщение классификации элементарных полных теорий с конечным числом счетных моделей относительно двух основных характеристик (предпорядков Рудина — Кейслера и функций распределения числа предельных моделей) на произвольный случай с конечным предпорядком Рудина — Кейслера. Устанавливается, что те же самые характеристики играют ключевую роль в рассматриваемом случае, и доказывается совместность любых конечных предпорядков Рудина — Кейслера с произвольными функциями распределения $f$, удовлетворяющими условию $\operatorname{rang}f\subseteq\omega\cup\{\omega,2^\omega\}$.