RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 1977, том 18, номер 4, страницы 934–938 (Mi smj3968)

Эта публикация цитируется в 2 статьях

Отдел заметок

О локальной конечности некоторых $PI$-алгебр

К. И. Бейдар, В. Д. Тэн


Аннотация: Пусть $R$ – ассоциативная алгебра с единицей над полем $F$, $G$ – конечная группа автоморфизмов алгебры $R$ и $S$ – множество инвариантных элементов алгебры $R$ относительно группы $G$.
В работе показано, что если алгебра $R$ является $PI$-алгеброй, содержит такой центральный элемент $\gamma$, что $\sum_{g\in G}g(\gamma)=1$, и элементы множества $S$ алгебраичны над полем $F$, то $R$ – алгебраическая алгебра.

УДК: 519.48

Статья поступила: 06.08.1975


 Англоязычная версия: Siberian Mathematical Journal, 1977, 18:4, 663–666

Реферативные базы данных:


© МИАН, 2025