RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 1974, том 15, номер 4, страницы 909–917 (Mi smj4297)

Эта публикация цитируется в 29 статьях

О собственных голоморфных отображениях строго псевдовыпуклых областей

С. И. Пинчук


Аннотация: Доказывается, что если $D_1$ и $D_2$ строго псевдовыпуклые области в $\mathbf{C}^n$, а $f\colon D_1\to D_2$ – собственное голоморфное отображение, которое продолжается до отображения $f\colon\bar D_1\to\bar D_2$ класса $C^1$, то $f$ – локально биголоморфно. Кроме того, устанавливается, что всякое собственное голоморфное отображение строго псевдовыпуклых областей непрерывно продолжается в замыкание, удовлетворяет там условию Гельдера с показателем $1/2$, а его якобиан ограничен в $D_1$.

УДК: 517.55

Статья поступила: 22.01.1973


 Англоязычная версия: Siberian Mathematical Journal, 1974, 15:4, 644–649

Реферативные базы данных:


© МИАН, 2024