RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 1973, том 14, номер 3, страницы 599–608 (Mi smj4372)

К двойственности некоторых классов линейных операторов, действующих между банаховыми пространствами и банаховыми решетками

В. Л. Левин


Аннотация: Оператор $T\colon X\to E$, где $X$ – банахово пространство, $E$ – банахова решетка, называется правильным, если образ единичного шара из $X$ ограничен по упорядочению в $E$. Оператор $T\colon E\to X$ называется суммирующим, если из сходимости в $E$ ряда $\sum\limits_{k=1}^\infty|e_k|$ следует $\sum\limits_{k=1}^\infty\|Te_k\|<\infty$. На пространствах правильных $\Pi(X,E)$ и суммирующих $S(E,X)$ операторов вводятся некоторые естественные нормы. Указано условие на $E$, необходимое и достаточное для того, чтобы для любого $X$ отображение $T\to T^*$ было изометрическим вложением $\Pi(X,E)\to S(E',X')$. При этом условии на $E$ доказана полнота $\Pi(X,E)$. Доказано, что композиция операторов $T_1\in\Pi(X,E)$ и $T_2\in S(E,Y)$ есть абсолютно суммирующий оператор $X\to Y$ в смысле Гротендика–Пелчинского–Пича для любых банаховых пространств $X,Y$ и банаховой решетки $E$. Работа содержит также характеризацию $L$-пространств и ограниченных $M$-пространств в терминах свойств суммирующих и правильных операторов и ряд других результатов.

УДК: 513.88

Статья поступила: 19.06.1972


 Англоязычная версия: Siberian Mathematical Journal, 1973, 14:3, 416–422

Реферативные базы данных:


© МИАН, 2024