Аннотация:
Группа $G$ называется $\exists$-свободной, если ее $\exists$-теория совпадает с $\exists$-теорией свободной неабелевой группы. Приводятся простейшие свойства $\exists$-свободных групп, примеры конечно-порожденных $\exists$-свободных, но не свободных групп, доказывается результат о совпадении понятий $\exists$-свободы и $\omega$-аппроксимируемости свободными группами в классе конечно-порожденных групп.
Библиогр. 3.