Аннотация:
Рассматривается трехмерная смешанная краевая задача теории упругости о гармонических во времени колебаниях полубесконечного анизотропного цилиндра. Показано, что при определенных положении и форме зоны защемления поверхности происходит захват упругой волны, т. е. задача приобретает нетривиальное решение с экспоненциальным затуханием на бесконечности, или, наоборот, захваченной волны гарантированно нет на любой частоте колебаний. Сформулированы открытые вопросы о схожих спектральных задачах.
Ключевые слова:анизотропный цилиндрический волновод, система уравнений теории упругости, захваченные волны, собственные частоты.