Аннотация:
Доказано, что 1) характеристическая функция независимого множества в регулярном графе, достигающего границы Дельсарта — Хоффмана, является совершенной раскраской; 2) трансверсаль в униформном регулярном гиперграфе является независимым множеством в мультиграфе смежности вершин гиперграфа, достигающим границы Дельсарта — Хоффмана для этого мультиграфа; 3) комбинаторные дизайны с параметрами $t$-$(v,k,\lambda)$ и их $q$-аналоги, разностные множества, матрицы Адамара и бент-функции эквивалентны совершенным раскраскам некоторых графов или мультиграфов, в частности, графов Джонсона $J(n,k)$ ($(k-1)$-$(v,k,\lambda)$-дизайны) и Грассмана $J_2(n,2)$ (бент-функции).
Ключевые слова:совершенные раскраски, трансверсали гиперграфов, комбинаторные дизайны, $q$-аналоги комбинаторных дизайнов, разностные множества, бент-функции, граф Джонсона, граф Грассмана, граница Дельсарта — Хоффмана.