Аннотация:
Решена восходящая к А. Гурвицу задача о числе топологических неэквивалентных накрытий над компактной римановой поверхностью рода $g$, имеющих заданный тип ветвления. Показано, что при $g\to\infty$ это число асимптотически равно
$$
2(n!)^{2g-2}\prod_{p=1}^n\frac{n!}{1^{s_1^p}\cdot s_1^p!\cdot\dotso\cdot n^{s_n^p}\cdot s_n^p!},
$$
где $n$ – кратность накрытий, а $\bigl(1^{s_1^p}\dots n^{s_n^p}\bigr)$, $p=1,\dots,r$ – циклический тип подстановок из $S_n$, определяющих порядки точек ветвления.
В качестве следствия в терминах неприводимых характеров симметрических групп получены необходимые и достаточные условия для существования накрытий над римановой сферой и показано, что при $n>2$ и $g\to\infty$ “почти все” накрытия имеют тривиальную группу преобразований наложения.
Библ. 18.