Аннотация:
Введен класс функций, задаваемых интегралами Пуассона на отрезке $[-1,1].$ Изучены приближения рациональными интегральными операторами Фурье — Чебышёва на указанных классах. Установлены интегральные представления приближений и оценки сверху равномерных приближений. В случае, когда граничная функция имеет на отрезке $[-1,1]$ степенную особенность, найдены оценки сверху поточечных и равномерных приближений, асимптотическое выражение мажоранты равномерных приближений посредством рациональных функций с фиксированным числом геометрически различных заданных полюсов. При двух геометрически различных полюсах четной кратности аппроксимирующей функции получены асимптотические оценки наилучших равномерных приближений рассматриваемым методом, которые имеют более высокую скорость сходимости в сравнении с полиномиальными аналогами.
Ключевые слова:класс интегралов Пуассона, рациональные интегральные операторы, ряды Фурье, поточечные и равномерные приближения, асимптотические оценки, точные константы.