RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 2022, том 63, номер 6, страницы 1266–1275 (Mi smj7730)

Критерии единственности решения краевой задачи для оператора $\frac{\partial ^{2p} }{\partial t^{2p}}-A$ с эллиптическим оператором $A$ произвольного порядка

Б. Е. Кангужинab, Б. Д. Кошановca

a Казахский национальный университет имени Аль-Фараби, пр. Аль-Фараби, 71, Алматы 050040, Казахстан
b Институт математики и математического моделирования, ул. Пушкина, 125, Алматы 050010, Казахстан
c Международный университет информационных технологий, ул. Манаса, 34А, Алматы 050040, Казахстан

Аннотация: Приведен критерий единственности решения задачи Дирихле по времени и общими краевыми условиями по пространственным переменным задачи для оператора $\frac{\partial ^{2p} }{\partial t^{2p}}-A(x,D).$ Порядок $\frac{\partial ^{2p} }{\partial t^{2p}}$ оператора дифференцирования считается произвольным четным числом. Оператор $A(x,D)$ по пространственным переменным может быть произвольным эллиптическим оператором с довольно общими граничными операторами $B_j$, подчиненным известным условиям Агмона. Условия Агмона гарантируют существование полной ортонормированной в $L_2(\Omega)$ системы собственных функций, если $\Omega$ — ограниченная многомерная область с достаточно гладкой границей.

Ключевые слова: эллиптические операторы высших порядков, краевые задачи, единственность решения, собственные функции, полные ортонормированные системы, целые функции экспоненциального типа.

УДК: 517.956

MSC: 35R30

Статья поступила: 12.01.2022
Окончательный вариант: 25.04.2022
Принята к печати: 15.06.2022

DOI: 10.33048/smzh.2022.63.608


 Англоязычная версия: Siberian Mathematical Journal, 2022, 63:6, 1083–1090

Реферативные базы данных:


© МИАН, 2024