RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирский математический журнал // Архив

Сиб. матем. журн., 2023, том 64, номер 4, страницы 742–752 (Mi smj7794)

Регулярность роста ряда Дирихле по усиленно не полной системе экспонент

А. М. Гайсинa, Р. А. Гайсинa, Т. И. Белоусb

a Институт математики с ВЦ УФИЦ РАН, ул. Чернышевского, 112, Уфа 450008
b Уфимский университет науки и технологий, ул. Заки Валиди, 32, Уфа 450076

Аннотация: Изучается поведение суммы ряда Дирихле $F(s)=\sum\limits_{n} a_ne^{\lambda_ns}$, $0<\lambda_{n}\uparrow\infty$, абсолютно сходящегося в левой полуплоскости $\Pi_0=\{ s=\sigma+it: \sigma<0\}$, на кривой, произвольным образом приближающейся к мнимой оси — границе этой полуплоскости. Предполагается, что для максимального члена ряда выполнена некоторая оценка снизу на какой-то последовательности точек $ \sigma_n \uparrow 0-$. \par Суть обсуждаемых задач следующая. Пусть $\gamma$ — некоторая кривая, начинающаяся в полуплоскости $\Pi_0$ и оканчивающаяся на ее границе или асимптотически приближающаяся к ней. Спрашивается, при каких условиях найдется последовательность $ \{\xi_n\} \subset\gamma$, $\operatorname{Re}\xi_n \to 0-$, такая, что $ \ln M_F($Re$\xi_n) \sim \ln\vert F(\xi_n)\vert $, где $M_F(\sigma)=\sup\limits_{\vert t\vert <\infty}\vert F(\sigma+it) \vert $. Ответ на этот вопрос был получен А. М. Гайсиным еще в 2003 г. В настоящей статье получено решение следующей задачи: при каких дополнительных условиях на $\gamma$ будет справедливо усиленное асимптотическое соотношение для суммы $F(s)$ ряда Дирихле в случае, когда аргумент $s$ стремится к мнимой оси вдоль $\gamma$ по достаточно массивному множеству?

Ключевые слова: ряд Дирихле, лакунарный степенной ряд, максимальный член, кривая ограниченного наклона, полуплоскость сходимости.

УДК: 517.53

MSC: 35R30

Статья поступила: 03.03.2023
Окончательный вариант: 20.04.2023
Принята к печати: 16.05.2023

DOI: 10.33048/smzh.2023.64.407



© МИАН, 2024