Аннотация:
Используя деформации гиперболических конических многообразий, Ходжсон и Керкгоф показали, что мощность множества трехмерных многообразий, полученных хирургиями Дена на гиперболических узлах и не допускающих гиперболическую структуру, конечна. Они поставили следующий вопрос: “Убывает ли квадрат длины меридиана, нормированный площадью, максимальной трубчатой окрестности сингулярного множества конического многообразия при изменении конических углов и возрастает ли, если к нему добавить квадрат конического угла?” В работе дан положительный ответ на этот вопрос в окрестности нулевых конических углов для бесконечного семейства гиперболических конических многообразий, полученных хирургиями Дена вдоль дополнений к зацеплению Уайтхеда. Основной используемый метод опирается на явные вычисления групп голономий с помощью $A$-полиномов и максимальных трубок. Один из ключевых инструментов – разложение в ряд Тейлора геометрической компоненты множества нулей $A$-полинома в терминах конических углов. Также показано, что последовательность данных разложений в ряд Тейлора для многообразий, полученных хирургиями Дена, сходится к разложению для предельного гиперболического многообразия.