RUS  ENG
Полная версия
ЖУРНАЛЫ // Stochastic Processes and their Applications // Архив

Stoch. Proc. Appl., 2012, том 122, выпуск 7, страницы 2594–2609 (Mi spa2)

Эта публикация цитируется в 16 статьях

Subcritical branching processes in a random environment without the Cramer condition

V. Vatutina, X. Zhengb

a Department of Discrete Mathematics, Steklov Mathematical Institute, 8 Gubkin Street, 119 991 Moscow, Russia
b Department of ISOM, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region

Аннотация: A subcritical branching process in random environment (BPRE) is considered whose associated random walk does not satisfy the Cramer condition. The asymptotics for the survival probability of the process is investigated, and a Yaglom type conditional limit theorem is proved for the number of particles up to moment n given survival to this moment. Contrary to other types of subcritical BPRE, the limiting distribution is not discrete. We also show that the process survives for a long time owing to a single big jump of the associate random walk accompanied by a population explosion at the beginning of the process.

MSC: 60J80, 60K37, 60G50, 60F17

Поступила в редакцию: 04.01.2012
Исправленный вариант: 10.04.2012
Принята в печать: 15.04.2012

Язык публикации: английский

DOI: 10.1016/j.spa.2012.04.008



Реферативные базы данных:


© МИАН, 2024