Аннотация:
Популярность алгоритмов обработки сигналов, использующих методы вейвлет-анализа, значительно возросла за последние десятилетия. Объясняется это тем, что вейвлет-разложение представляет собой удобный математический аппарат, способный решать задачи, в которых применение традиционного Фурье-анализа оказывается неэффективным. Основные задачи, для решения которых используются методы вейвлет-анализа, — это компрессия сигналов и удаление шума. При этом чаще всего используется пороговая обработка коэффициентов вейвлет-разложения, которая обнуляет коэффициенты, не превышающие заданного порога. Наличие шума и процедуры пороговой обработки неизбежно приводят к погрешностям в оцениваемом сигнале. Свойства оценки таких погрешностей (среднеквадратичного риска) исследовались во многих работах. В частности, показано, что при определенных условиях оценка риска является сильно состоятельной и асимптотически нормальной. При использовании методов пороговой обработки обычно предполагается, что число вейвлет-коэффициентов фиксировано. Однако в некоторых ситуациях объем выборки заранее не известен и моделируется случайной величиной. В данной работе рассматривается модель со случайным числом наблюдений и описывается класс распределений, которые могут быть предельными для оценки среднеквадратичного риска.