Аннотация:
Исследуется задача о равновесии упругой трансверсально-изотропной пластины (модели Тимошенко), содержащей сквозную наклонную трещину. Считается что трещина не выходит на внешнюю границу. В исходном состоянии предполагается, что противоположные берега соприкасаются друг с другом. При этом трещина описывается с помощью поверхности, которая удовлетворят определенным предположениям. На кривой, задающей трещину в срединной плоскости, ставится краевое условие в виде неравенства, описывающее непроникание противоположных берегов трещины. На внешней границе заданы однородные условия Дирихле. Установлена локальная дополнительная гладкость решения по сравнению с заданной в вариационной формулировке при определенных условиях на поверхность, задающую трещину. Доказана бесконечная дифференцируемость функции решения при дополнительных предположениях на функцию, задающую внешние нагрузки, а также на значения функций перемещений вблизи кривой, описывающей трещину.
Ключевые слова:вариационное неравенство, пластина Тимошенко, трещина, условия непроникания, регулярность решения.