Аннотация:
Рассмотрен частный случай ранее изученного автором вырождающегося дифференциального оператора второго порядка с сохранением введенных предположений и обозначений. Основное внимание в работе уделяется изучению эффектов, связанных с “сильным” вырождением. Настоящая задача решается для использования в дальнейших исследованиях формально сопряженного (связанного операцией транспонирования) уравнения, а также для получения некоторой теоремы существования и единственности обобщенного решения формально сопряженного уравнения из доказанной теоремы. Использование приведенных ниже результатов, относящихся к данному уравнению, сводится в простейшем случае к операторным уравнениям. Исследованы существование и единственность обобщенного решения первой краевой задачи для данного уравнения с применением теории операторов, также приводится обобщенное решение данного уравнения в случае, связанном с “сильным” вырождением. Результаты, полученные для данного уравнения, содержащего вырождение, будут использованы в дальнейшем для исследования таких уравнений, которые содержат модельные операторы. Уравнения такого вида возникают при математическом моделировании различных физических
процессов.