RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки СВФУ // Архив

Математические заметки СВФУ, 2018, том 25, выпуск 2, страницы 65–84 (Mi svfu220)

Математика

Weyl-almost periodic and asymptotically Weyl-almost periodic properties of solutions to linear and semilinear abstract Volterra integro-differential equations

M. Kostić

Faculty of Technical Sciences, University of Novi Sad, 6 Trg D. Obradovića, Novi Sad 21125, Serbia

Аннотация: The main purpose of paper is to consider Weyl-almost periodic and asymptotically Weyl-almost periodic solutions of linear and semilinear abstract Volterra integro-differential equations. We focus our attention to the investigations of Weyl-almost periodic and asymptotically Weyl-almost periodic properties of both, finite and infinite convolution product, working in the setting of complex Banach spaces. We introduce the class of asymptotically (equi)-Weyl-$p$-almost periodic functions depending on two parametres and prove a composition principle for the class of asymptotically equi-Weyl-$p$-almost periodic functions. Basically, our results are applicable in any situations where the variation of parameters formula takes a role. We provide several new contributions to abstract linear and semilinear Cauchy problems, including equations with the Weyl Liouville fractional derivatives and the Caputo fractional derivatives. We provide some applications of our abstract theoretical results at the end of paper, considering primarily abstract degenerate differential equations, including the famous Poisson heat equation and its fractional analogues.

Ключевые слова: Weyl-$p$-almost periodic functions, asymptotically Weyl-$p$-almost periodic functions, abstract Volterra integro-differential equations.

УДК: 517.98

Поступила в редакцию: 28.03.2018

Язык публикации: английский

DOI: 10.25587/SVFU.2018.98.14232



Реферативные базы данных:


© МИАН, 2024