RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки СВФУ // Архив

Математические заметки СВФУ, 2018, том 25, выпуск 2, страницы 85–96 (Mi svfu221)

Эта публикация цитируется в 1 статье

Математика

Singular Cauchy problem for generalized homogeneous Euler–Poisson–Darboux equation

E. L. Shishkinaa, M. Karabacakb

a Voronezh State University, Faculty of Applied Mathematics, Informatics and Mechanics, 1 Universitetskaya Square, Voronezh 394063, Russia
b Atatürk University, Department of Mathematics, Science Faculty 25240 Yakutiye, Erzurum, Turkey

Аннотация: In this paper, we solve singular Cauchy problem for a generalised form of an homogeneous Euler–Poisson–Darboux equation with constant potential, where Bessel operator acts instead of the each second derivative. In the classical formulation, the Cauchy problem for this equation is not correct. However, S. A. Tersenov observed that, considering the form of a general solution of the classical Euler–Poisson–Darboux equation, the derivative in the second initial condition must be multiplied by a power function whose degree is equal to the index of the Bessel operator acting on the time variable. The first initial condition remains in the usual formulation. With the chosen form of the initial conditions, the considering equation has a solution. Obtained solution is represented as the sum of two terms. The first tern is an integral containing the normalized Bessel function and the weighted spherical mean. The second term is expressed in terms of the derivative of the square of the time variable from the integral, which is similar in structure to the first term.

Ключевые слова: Bessel operator, Euler–Poisson–Darboux equation, singular Cauchy problem.

УДК: 517.9

Поступила в редакцию: 28.02.2018

Язык публикации: английский

DOI: 10.25587/SVFU.2018.98.14233



Реферативные базы данных:


© МИАН, 2025