Аннотация:
Исследована однозначная разрешимость одной нелокальной краевой задачи для уравнения смешанного гиперболо-параболического типа третьего порядка. Краевое условие поставленной задачи содержит линейную комбинацию операторов дробного в смысле Римана–Лиувилля интегродифференцирования с гипергеометрической функцией Гаусса от значений решения на характеристиках, поточечно связанных со значениями решения и производной от него на линии вырождения. Формулируются и доказываются теоремы существования и единственности решения поставленной задачи для различных случаев показателя степени в рассматриваемом уравнении. Единственность решения задачи при определенных ограничениях неравенственного типа на заданные функции и порядки дробных производных в краевом условии доказывается методом интегралов энергии. Выписываются функциональные соотношения между следом искомого решения и производной от него, принесенные на линию вырождения из гиперболической и параболической частей смешанной области. При выполнении условий теоремы единственности доказывается существование решения задачи путем эквивалентной редукции к интегральным уравнениям Фредгольма второго рода относительно производной от следа искомого решения. Определены промежутки изменения порядков операторов дробного интегродифференцирования, при которых решение задачи существует и единственно. Установлен эффект влияния коэффициента при младшей производной в исходном уравнении на однозначную разрешимость поставленной задачи.