RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки СВФУ // Архив

Математические заметки СВФУ, 2021, том 28, выпуск 2, страницы 88–101 (Mi svfu319)

Эта публикация цитируется в 1 статье

Математика

On the Jacobian group of a cone over a circulant graph

L. A. Grunwaldab, I. A. Mednykhab

a Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia
b Novosibirsk State University, 1 Pirogov Street, Novosibirsk 630090, Russia

Аннотация: For any given graph $G$, consider the graph $\hat{G}$ which is a cone over $G$. We study two important invariants of such a cone, namely, the complexity (the number of spanning trees) and the Jacobian of the graph. We prove that complexity of graph $\hat{G}$ coincides with the number of rooted spanning forests in $G$ and the Jacobian of $\hat{G}$ is isomorphic to the cokernel of the operator $I+L(G)$, where $L(G)$ is the Laplacian of $G$ and $I$ is the identity matrix. As a consequence, one can calculate the complexity of $\hat{G}$ as $\det(I+L(G))$.
As an application, we establish general structural theorems for the Jacobian of $\hat{G}$ in the case when $G$ is a circulant graph or cobordism of two circulant graphs.

Ключевые слова: spanning tree, spanning forest, circulant graph, Laplacian matrix, cone over graph, Chebyshev polynomial.

УДК: 517.545+517.962.2+519.173

Поступила в редакцию: 15.02.2021
Исправленный вариант: 12.03.2021
Принята в печать: 26.05.2021

Язык публикации: английский

DOI: 10.25587/SVFU.2021.32.84.006



Реферативные базы данных:


© МИАН, 2024