RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки СВФУ // Архив

Математические заметки СВФУ, 2022, том 29, выпуск 1, страницы 88–102 (Mi svfu344)

Математика

Symmetries in quaternionic analysis

H. Orelma

Tampere University of Technology

Аннотация: This survey-type paper deals with the symmetries related to quaternionic analysis. The main goal is to formulate an $SU$ (2) invariant version of the theory. First, we consider the classical Lie groups related to the algebra of quaternions. After that, we recall the classical Spin(4) invariant case, that is Cauchy-Riemann operators, and recall their basic properties. We define the $SU$ (2) invariant operators called the Coifman-Weiss operators. Then we study their relations with the classical Cauchy-Riemann operators and consider the factorization of the Laplace operator. Using $SU$ (2) invariant harmonic polynomials, we obtain the Fourier series representations for quaternionic valued functions studying in detail the matrix coefficients.

Ключевые слова: quaternionic analysis, Cauchy–Riemann operator, Lie group SU (2), Coif-man–Weiss operator, Fourier series, matrix element.

УДК: 517.548+517.547.9

Поступила в редакцию: 24.08.2021
Принята в печать: 28.02.2022

Язык публикации: английский

DOI: 10.25587/SVFU.2022.72.67.007



© МИАН, 2024