Аннотация:
Рассматривается модель динамики популяции рептилий, у которых пол будущей особи зависит от температуры окружающей среды. Модель описывается системой дифференциальных уравнений с запаздыванием, которое отвечает за время нахождения особей в молодом возрасте. Изучается случай полного вымирания всей популяции и случай стабилизации численности популяции к постоянной величине. В каждом случае построены функционалы Ляпунова - Красовского, с помощью которых указаны оценки, характеризующие скорость вымирания популяции в первом случае и скорость стабилизации численности популяции во втором случае. С помощью полученных оценок можно оценить время, за которое численность популяции достигнет равновесного состояния.
Ключевые слова:динамика популяции рептилий, уравнение с запаздывающим аргументом, положение равновесия, асимптотическая устойчивость, оценки решений, функционал Ляпунова — Красовского.
УДК:
517.929.4
Поступила в редакцию: 12.10.2023 Принята в печать: 30.11.2023