RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Средневолжского математического общества // Архив

Журнал СВМО, 2016, том 18, номер 2, страницы 115–124 (Mi svmo600)

Эта публикация цитируется в 6 статьях

Математическое моделирование и информатика

Условия разрешимости системы уравнений, описывающих длинные волны в водном прямоугольном канале, глубина которого меняется вдоль оси

С. Н. Алексеенкоa, М. В. Донцоваb

a Нижегородский государственный технический университет им. Р. Е. Алексеева
b Нижегородский государственный педагогический университет им. К. Минина, г.~Нижний Новгород

Аннотация: Нелокальная разрешимость задачи Коши в физических переменных доказана для системы уравнений,описывающих длинные волны в водном прямоугольном канале, глубина которого меняется вдоль оси. Чаще всего эту систему квазилинейных уравнений называют системой уравнений мелкой воды. Исходная система преобразуется к системе симметричных квазилинейных уравнений с помощью инвариантов Римана. Хотя ударные волны вполне возможны при построении решений квазилинейных гиперболических систем для широкого класса начальных данных, мы нашли достаточные условия на исходные данные, которые гарантируют существование глобального классического решения, продолженного конечным числом шагов из локального решения. Существование локального решения, гладкость которого не ниже, чем гладкости начальных условий, тоже доказана. Исследование рассматриваемой проблемы выполнено на основе метода дополнительного аргумента. Доказательство нелокальной разрешимости опирается на оригинальные глобальные оценки.

Ключевые слова: система длинных волн, метод дополнительного аргумента, глобальные оценки.

УДК: 517.9



Реферативные базы данных:


© МИАН, 2024