Аннотация:
В работе рассматривается класс $G$ сохраняющих ориентацию диффеоморфизмов Морса-Смейла без гетероклинических пересечений, заданных на сфере $S^{n}$ размерности $n>3$. Каждому диффеоморфизму $f\in G$ ставится в соответствие раскрашенный граф $\Gamma_f$, оснащенный автоморфизмом $P_f$ и дается определение изоморфизма двух таких графов. Анонсируется результат о том, что существование изоморфизма графов $\Gamma_f, \Gamma_{f'}$ в смысле данного определения является необходимым и достаточным условием топологической сопряженности диффеоморфизмов $f, f'\in G$, и существует алгоритм, распознающий существование изоморфизма таких графов за линейное время.