Аннотация:
Исследовано квазилинейное уравнение в частных производных первого порядка общего вида с различными начальными условиями: в первом случае линия, несущая начальные данные, задается параметрически; во втором случае линия, несущая начальные данные, задается в декартовых координатах и имеет бесконечную длину; в третьем случае линия, несущая начальные данные, задается в декартовых координатах и имеет ограниченную длину. В каждом из случаев для рассматриваемого квазилинейного уравнения сформулированы условия локальной разрешимости и показано, что решение имеет ту же гладкость, что и функция, задающая начальные условия. Для исследования вышеперечисленных задач использовался метод дополнительного аргумента. В рамках этого метода решается некоторая система интегральных уравнений, решение которой дает решение задачи Коши для исходного уравнения.
Ключевые слова:квазилинейное дифференциальное уравнение первого порядка, задача Коши, метод дополнительного аргумента, локальная разрешимость, интегральное уравнение.