RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Средневолжского математического общества // Архив

Журнал СВМО, 2021, том 23, номер 1, страницы 43–57 (Mi svmo788)

Математика

К частичной устойчивости линейных систем относительно заданной компоненты фазового вектора

В. И. Никонов

Национальный исследовательский Мордовский государственный университет имени Н. П. Огарева, г. Саранск

Аннотация: Предлагается новый геометрический подход к исследованию частичной устойчивости линейных систем, основанный на применении геометрической теории линейных операторов. Привлекая теорию сопряженных пространств и сопряженных линейных операторов, строятся базисы, в которых исследуемая система принимает канонический вид. Рассматривается циклическое подпространство относительно сопряженного линейного оператора. Строится базис сопряженного пространства линейного оператора, в котором его матрица принимает канонический вид. Этому базису соответствует двойственный базис исходного линейного пространства. Тогда в паре базисов дуальных пространств, исследуемая система принимает наиболее простой вид. Реализация геометрических свойств системы осуществляется с помощью неособого линейного преобразования в пространстве части компонент фазового вектора системы. Это позволяет произвести декомпозицию исследуемой системы с целью получения необходимых и достаточных условий частичной устойчивости линейной системы. В эквивалентной системе выделяется независимая подсистема, характер устойчивости которой определяет поведение исследуемой компоненты фазового вектора исходной системы. Устанавливается взаимосвязь частичной устойчивости системы с существованием инвариантного подпространства линейного оператора, характеризующего динамику системы. Канонический вид полученной подсистемы позволяет легко исключить вспомогательные переменные и записать эквивалентное этой системе уравнение. Показано применение полученных результатов к решению задачи частичной устойчивости для линейных систем с постоянными коэффициентами из классов обыкновенных дифференциальных уравнений, дискретных и систем с отклоняющимся аргументом. Приведен пример линейной системы дифференциальных уравнений, иллюстрирующий полученный результат.

Ключевые слова: частичная устойчивость, циклическое подпространство, минималный аннулирующий многочлен, сопряженное пространство.

УДК: 517.926:517.929.4

MSC: Primary 76D07; Secondary 76D09, 76D17

DOI: 10.15507/2079-6900.23.202101.43-57



© МИАН, 2024